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NERSC is the Primary Computing 
Facility for the Office of Science 

• NERSC serves a large population 
Approximately 3000 users,  
400 projects, 500 code instances 

• Focus on “unique” resources 
– High end computing systems 
– High end storage systems 

•  File system and tape archive 
– Interface to high speed networking 

• Science-driven 
– Science problems used in machine 

procurements and performance metrics 
– Science services 
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Workload Changes Over Time with 
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NERSC at LBNL 
•  1000+ users,100+ 

projects 
•  Allocations: 

–  80% DOE program manager 
control  

–  10% ASCR Leadership 
Computing Challenge* 

–  10% NERSC reserve 

•  Science includes all of 
DOE Office of Science 

•  Machines procured 
competitively 

ASCR’s Computing Facilities 

LCFs at ORNL and ANL 
•  100+ users 10+ projects 
•  Allocations: 

–  80% ANL/ORNL managed 
INCITE process 

–  10% ACSR Leadership 
Computing Challenge* 

–  10% LCF reserve 

•  Science limited to largest 
scale; no limit to DOE/SC 

•  Machines procured through 
partnerships 
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HPSS Archival Storage

•  59 PB capacity

•  11 Tape libraries

•  140 TB disk cache


NERSC 2009 Configuration 
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Large-Scale Computing System

Franklin (NERSC-5): Cray XT4


•  9,532 compute nodes; 38,128 cores

•  ~25 Tflop/s on applications; 356 Tflop/s peak 


Hopper (NERSC-6): Cray XT 

•  Phase 1: Cray XT5, 668 nodes, 5344 cores

•  Phase 2: > 1 Pflop/s peak


Clusters 


Jacquard and Bassi

•  LNXI and IBM clusters

•  Upgrading to Carver (NCS-c)


PDSF (HEP/NP)

•  Linux cluster (~1K cores)


NERSC Global 

   Filesystem (NGF)

Uses IBM’s GPFS

440 TB; 5.5 GB/s


Analytics / 
Visualization


Davinci (SGI Altix)

•  Tesla

   testbed

•  Upgrade

   planned




Demand for More Computing 

Compute Hours Requested vs Allocated


•  Each year DOE users 
requests ~2x as many 
hours as can be 
allocated


•  This 2x is artificially 
constrained by 
perceived availability


• Unfulfilled allocation 
requests amount to 
hundreds of millions of 
compute hours in 2010
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NERSC Initiative for Scientific 
Exploration (NISE) 

• For remainder of AY 2009, 10M hours 
available for 
– New research problems not covered by  

existing ERCAP allocation, especially high 
risk/high impact science 

– New programming techniques that take 
advantage of multicore compute nodes 

– Code scaling to higher concurrencies for 
codes that scale on projects limited by 
current allocation 



NERSC System Roadmap 

•  Goal is two systems on the floor at all times 
•  Systems procured by sustained performance (10% of peak?) 
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Franklin (N5) 
19 TF Sustained 
101 TF Peak 

Franklin (N5) +QC 
36 TF Sustained 
352 TF Peak 

Hopper (N6) 
>1 PF Peak 

NERSC-7 
10 PF Peak 

NERSC-8 
100 PF Peak 

NERSC-9 
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Center of Excellence with Cray 

•  NERSC/Cray “Programming Models 
Center of Excellence” combines: 
–  Berkeley Lab strength in advanced 

programming models, multicore tuning, 
and application benchmarking 

–  Cray strength in advanced 
programming models, optimizing 
compilers, and benchmarking 

•  Immediate question: 
–  Best way to use cores in N6 node 
–  MPI, OpenMP, UPC/CAF, Pthreads,… 

•  Long term necessity for exascale: 
–  Massive on-chip concurrency 

necessary for reasonable power use 
–  3M for 1PF today  3 GW for 1 EF (or 

10 100PF) tomorrow? 
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DOE Explores Cloud Computing 

• ASCR Magellan Project 
–  $32M project at NERSC and ALCF 
–  ~100 TF/s compute cloud testbed (across sites) 
–  Petabyte-scale storage cloud testbed 

• Cloud questions to explore on Magellan: 
–  Can a cloud serve DOE’s mid-range computing needs? 
     More efficient than cluster-per-PI model 
– What part of the workload can be served on a cloud? 
– What features (hardware and software) are needed of a 

“Science Cloud”? (Eucalyptus at ALCF; Linux at NERSC) 
–  How does this differ, if at all, from commercial clouds? 



Data Driven Science 
-  Ability to generate data is exceeding our 

ability to store and analyze it 
-  Simulation systems and some observational 

devices grow in capability with Moore’s Law 

•  Opportunity to lead creation of scientific 
communities around data sets 

•  A science gateway is a set of hardware 
and software for remote data/services 

–  Deep Sky – “Google-Maps” of astronomical image 
data: 36 supernovae in 6 nights  

•  Petabyte data sets will be common:  
–  Climate modeling: IPCC will be 10s of petabytes 
–  Genome: Genomes will double each year 
–  Particle physics: LHC is projected to produce 16 

petabytes of data per year 



Tesla/Turing GPU Testbed 

•  2-node testbed with shared-memory 
GPU architecture on each node 

•  Goal 1: application experience 
•  Can science computation use GPUs? 

•  Goal 2: administration experience 
•  Batch queues and GPUs (GPU/CUDA, 

OpenGL/vis) 
•  Goal 3: visualization experience 

•  Remote delivery of hardware-accelerated 
graphics/vis 

•  Goal 4: large memory workload 
–  256 GB of shared memory  
•  Note: testbed, not production machine! 
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BASSI Davinci PDSF Jacquard 

NERSC Global File system (NGF) 
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•  A facility-wide, high performance, parallel file system 
–  Uses IBM’s GPFS technology for scalable high performance 
–  The /project file system in NGF from all NERSC systems 
–  Intended for data that is shared across machines or users in a project 
                               See: http://www.nersc.gov/nusers/services/proj.php 
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•  Announcing access to NGF from Franklin compute nodes 
–  Effective immediately /project is available on Franklin compute nodes 
–  Uses Cray DVS (Data Virtualization Services) software 
–  Expect ~4GB/s from /project vs. ~10GB/s from /scratch or /scratch2 
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NERSC Global File system (NGF) 

•  Coming soon to NGF 
•  Additional storage, up to ~1.5 PB total 
•  Access to NGF from new systems: Carver (replacing Jacquard and Bassi); 

Dalton (the Magellan testbed); Tesla & Turing (GPU testbed) 
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HPSS at NERSC 
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NERSC has been archiving data with HPSS since 1998 
•  The total data volume increases by ~50% annually 
NERSC has two HPSS systems:  
•  An Archive system that stores user files optimized 

for high-transfer rates; about 66M files in 2009 
•  A Backup system for NGF; about 12M files in 2009 
HPSS averages 100 MB/s, with peaks to 450 MB/s 



HPSS Upgrades and Plans 

•  Increased bandwidth 
–  Franklin increased load on HPSS by 50% 
–  New movers and servers; new clients on all NERSC systems 

•  Increased capacity through new hardware / tapes 
–  3 new storage libraries in past 2 years; 1 more in 2010 
–  Currently have max capacity of 59 PB if filled with 1 TB tapes 
–  1 ½ year repack (40K tapes onto 10K 1 TB tapes) underway  

•  Ease of use improvements 
–  Upgraded software to HPSS version 6.2 
–  Integrated HPSS into NIM for account/password management  
–  Improved MTBI from ~5 days in 2008 to ~9 days 2009.  

•  Evaluating new clients for bandwidth and functionality 
–  rsynch, conditional stores, and dynamic file aggregation 



Services for Science 



Reservations at NERSC 

• Reservation service being tested: 
– Reserve a certain date, time and duration 

• Debugging at scale 
• Real-time constraints in which need to analyze 

data before next run, e.g., daily target selection 
telescopes or genome sequencing pipelin 

– At least 24 hours advanced notice 
• https://www.nersc.gov/nusers/services/

reservation.php 
– Successfully used for IMG run, Madcap, IO 

benchmarking, etc. 



Science Gateways at NERSC 

•  Create scientific communities around data sets 
–  Models for sharing vs. privacy differ across communities 
–  Accessible by broad community for exploration, scientific discovery, 

and validation of results  
–  Value of data also varies: observations may be irreplaceable 

•  A science gateway is a set of hardware and software 
that provides data/services remotely 
–  Deep Sky – “Google-Maps” of astronomical image data 

•  Discovered 140 supernovae in 60 nights (July-August 2009) 
•  1 of 15 international collaborators were accessing NGF data through the SG 

nodes 24/7 using both the web interface and the database. 
–  Gauge Connection – Access QCD Lattice data sets 
–  Planck Portal – Access to Planck Data 

•  Building blocks for science on the web  
–  Remote data analysis, databases, job submission 
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Visualization Support 

21


Isocontours (a) and 
volume rendering (b) 
of two trillion zones 
on 32K cores of 
Franklin. 


Petascale visualization:  Demonstrate visualization scaling to unprecedented 
concurrency levels by ingesting and processing unprecedentedly large 
datasets. 

Implications: Visualization and analysis 
of Petascale datasets requires the I/O, 
memory, compute, and interconnect 
speeds of Petascale systems. 

Accomplishments: Ran VisIt SW on 
16K and 32K cores of Franklin. 

  • First-ever visualization of two 
trillion zone problem (TBs per scalar); 
data loaded in parallel. 

  •Petascale visualization 

b


a


Plots show ‘inverse 
flux factor,' the ratio 
of neutrino intensity 
to neutrino flux, 
from an ORNL 3D 
supernova 
simulation using 
CHIMERA.




HEP: Accelerator Modeling 
Objective:  Use INCITE resources to help 
design and optimize the electron beam for 
LBNL next-generation Free Electron Laser. 

Accomplishments: Code includes self-
consistent 3D space-charge effects, short-
range geometry & longitudinal 
synchrotron radiation wakefields, and 
detailed RF acceleration / focusing. 

  • Billion-particle simulation required for 
details of high brightness electron beams 
subject to microbunching instability.  

• Key NERSC visualization support. 

Implications: Numerically optimizing the 
beam lowers cost of design / operation and 
improves X-ray output, helping scientific 
discovery in physics, material science, 
chemistry and bioscience.  

. 


PI: J. Qiang (LBNL) 

Proc. Linac08 Conference


Visualization of an electron beam bending and 
changing orientation as it passes through a 

magnetic bunch compressor.

NERSC: 
• 400k hours used in 2009 (~50% of allocation). 
• Uses IMPACT code, part of NERSC6 test suite. 



Cloud-Resolving Climate Model 
Objective:  Climate models that fully 
resolve key convective processes in 
clouds; ultimate goal is 1-km resolution. 

Accomplishments: Developed a coupled 
atmosphere-ocean-land model based on 
geodesic grids. 

  • Multigrid solver scales perfectly on 20k 
cores of Franklin using grid with 167M 
elements. 

  • Invited lecture at SC09.  
NERSC: 

• 2M hour allocation in 2009. 
• NERSC/LBNL played key role in 

developing critical I/O code & Viz 
infrastructure to enable analysis of 
ensemble runs and icosohedral grid.  

Implications: Major transformation in 
climate/weather prediction, likely to be 
standard soon, just barely feasible now. 

B. 


PI: D. Randall, Colo. St 

A. 


A.  Surface temperature showing geodesic grid.

B. Composite plot showing several variables: wind velocity 

(surface pseudocolor plot), pressure (b/w contour 
lines), and a cut-away view of the geodesic grid.




Material Science: Optical Data Storage 
Objective: Explore ultrafast optical 
switching of nanoscale magnetic regions. 

Light 
Interaction 

with Magnetic 
Materials
Accomplishments: First-principles, time- & 

spin-dependent DFT study using locally-
designed code on laser-irradiated Ni. 

• Discovered that light leverages the crystal 
structure to transfer spin of electrons to 
higher orbit 

• Study is the first to clearly demonstrate 
that this phenomenon is a relativistic 
effect connected with electron spin.  

• Discovery matches experiment and can 
guide synthesis of new materials. 

NERSC: 
• 1.5 M hours in 2009; typically using 2,800 cores. 

J. Appl. Phys. (2008)  

PI:   G. Zhang (Indiana St) 
Implications: Potential for laser operated 
hard drives, 1000s of times faster than 
today’s technology.  



Supernova Core-Collapse 
PIs:   S. Woosley (UCSB),        

A. Burrows (Princeton) 
Objective:  First principles understanding 
of supernovae of all types, including 
radiation transport, spectrum formation, 
and nucleosynthesis. 

Accomplishments: NERSC runs of VULCAN 
core collapse explain magnetically-driven 
explosions in rapidly-rotating cores. 

•  First 2.5-D, detailed-microphysics 
radiation-magnetohydrodynamic 
calculations;  first time-dependent 2D rad-
hydro supernova simulations with multi-
group and multi-angle transport. 

• CASTRO, new multi-dimensional, Eulerian 
AMR hydrodynamics code that includes 
stellar EOS, nuclear reaction networks, 
and self-gravity. 

NERSC: 2M hours alloc in 2009 

Implications:  Will help confront one of the 
greatest mysteries in high-energy physics 
and astronomy -- the nature of dark energy.  

The exploding core of a massive star. a), b), and c) show 
morphology of selected isoentropy, isodensity contours 

during the blast; (d) AMR grid structure at coarser 
resolution levels."


a
 b


c
 d




Chemistry: Improving Catalysis 
PI: P. Balbuena, Texas A&M 

J. Phys. Chem. C, Sept, 2009 Cover Story 

Simulation showing carbon atom chains (yellow) on 
cobalt surfaces (blue & pink).


Objective: First-principles studies to 
develop better catalytic processes. 

Implications:  Improved power sources 
such as lithium-ion batteries, fuel cells. 

Accomplishments: DFT studies of catalyzed 
single-walled carbon nano-tube growth on 
Cobalt nano-particles.  
• Predict most stable adsorption sites. 
• Carbon atoms form curved & zigzag 

chains in various orientations – some 
are likely precursors to graphene. 

• Showed strong preference for certain 
metal sites. 

• Next step is to investigate growth on 
chiral surfaces  

NERSC: 
• VASP / CPMD on Franklin; .7M hour alloc.. 



Fusion: Gyrokinetic Modeling 
Objective:  Comprehensive first-principles 
simulation of energetic particle turbulence 
and transport in ITER-scale plasmas.  

Accomplishments: GTC simulation explains 
measurement of fast ion transport in 
General Atomics DIII-D tokamak shot. 
  • Diffusivity decreases drastically for high-
energy particles due to averaging effects of 
large gyroradius and banana width, and 
fast wave-particle decorrelation. 
  • 3 Fall 2009 invited talks. 

Implications: Improved modeling of fusion 
systems is essential to achieving the 
predictive scientific understanding needed 
to make fusion safe and practical. 

. 


PI: Z. Lin, UC Irvine 

Comm Comp Phys (2009)


Gyrokinetic simulation with 
kinetic electrons


using a hybrid model in 
GTC.  


2-D Electromagnetic field fluctuations 
in a simulated plasma due to 

microinstabilities in the current.


Phys Plas. (2008)

Phys Rev Lett (2008)


NERSC: 4M hours used in 2009; GTC part of 
NERSC6; 15-hour, 6,400-node run in March, 09 



NERSC is enabling new science in all disciplines, with 
about 1,500 refereed publications per year
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Cover Stories from NERSC Research 


